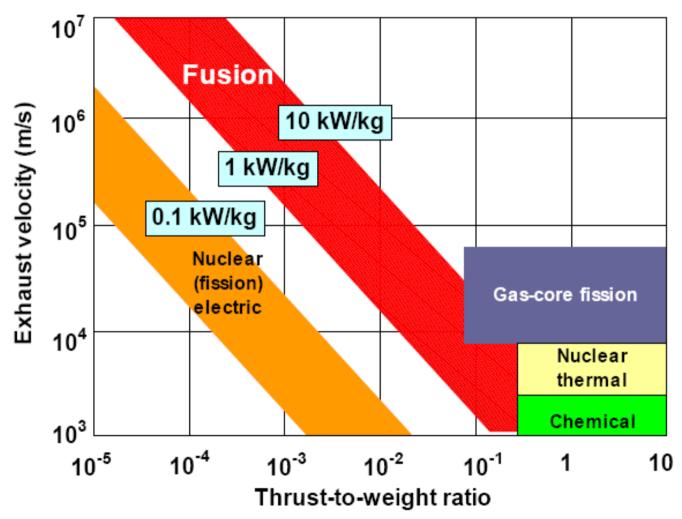

Project Icarus: Specific Power for Interstellar Missions Using Inertial Confinement Fusion Propulsion

K.F.Long, R.K.Obousy, A.Crowl Icarus Interstellar & 100 Year Starship

PROJECT ICARUS Flying Closer to Another Star

Changing the Paradigm

- Low Energy Capability:
 - Current mission planning focussed on science driven requirements, using energy capabilities from existing space transportation propulsion and power capabilities.
 - The mission is established based on science voids.
 - Current chemical energy systems yield low specific energy which lead to energy conversion systems with a low performance design, <10 km/s.
- High Energy Capability:
 - Using higher specific energy systems can deliver much higher dv, namely from nuclear processes.
 - Inherent energy releases are much greater per unit mass.
 - Can broaden current limitations and science horizons
 - We must embrace science driven missions which utilize <u>higher</u> <u>energy capabilities</u>. Both are important and coupled.


Definitions

- JET POWER is the net power of the rocket engine, after you have accounted for all the inefficiencies, the useful work performed computed from the product of THRUST and EXHAUST VELOCITY.
- SPECIFIC POWER is for the propulsion system, engine + power source + thermal management system.

$$P_{j} = \frac{1}{2} \dot{m} V_{ex}^{2} = \frac{1}{2} V_{ex} T$$

Propulsion Capability

Flyby Mission: 1-4-Stage

TABLE 2-5a. Alpha Centauri fly-by mission performance capabilities and requirements for variations in specific power for: single-stage vehicle, 10 MT payload, 4,000 MT propellant mass.

α _p , kW/kg	1.0	10.0	100.0
t, years	460	213	99
∆v, km/s	4,184	9,015	19,422
Mo, MT	4,205	4,205	4,205
Pj, MW	195	1,950	19,500
F, N	1,800	8,440	39,200
<lsp>, seconds</lsp>	141,180	304,167	655,307

TABLE 2-5b. Alpha Centauri fly-by mission performance capabilities and requirements for variations in specific power for: 2-stage vehicle, 10 MT payload, 4,000 MT propellant mass.

α _p , kW/kg	1.0	10.0	100.0
t, years	414	192	98
Δv, km/s	4,646	10,011	21,569
Mo, MT	4,873	4,873	4,873
Pj, MW, Stage 1	816	8,162	81,620
Pj, MW Stage 2	37	370	3,500
T, N	2,600	12,100	56,000
<lsp>, seconds</lsp>	153,110	329,870	710,675

Flyby Mission: 1-4-Stage

TABLE 2-5c. Alpha Centauri fly-by mission performance capabilities and requirements for variations in specific power for: 3-stage vehicle, 10 MT payload, 65,400 MT propellant mass.

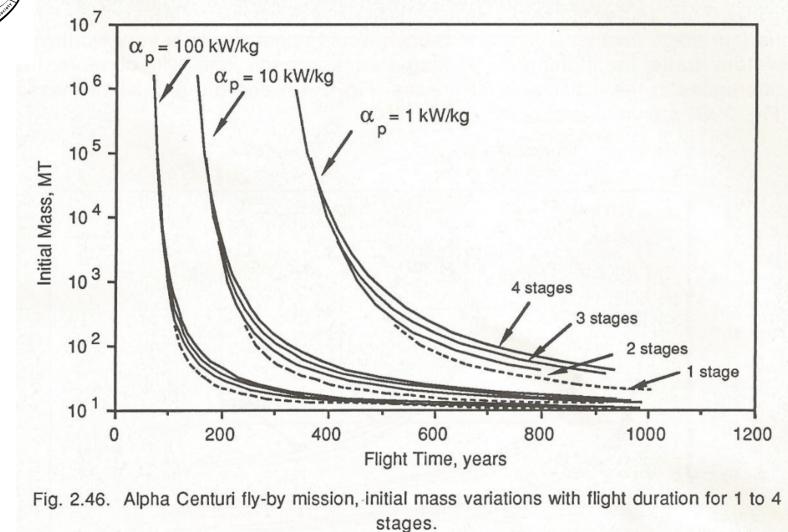
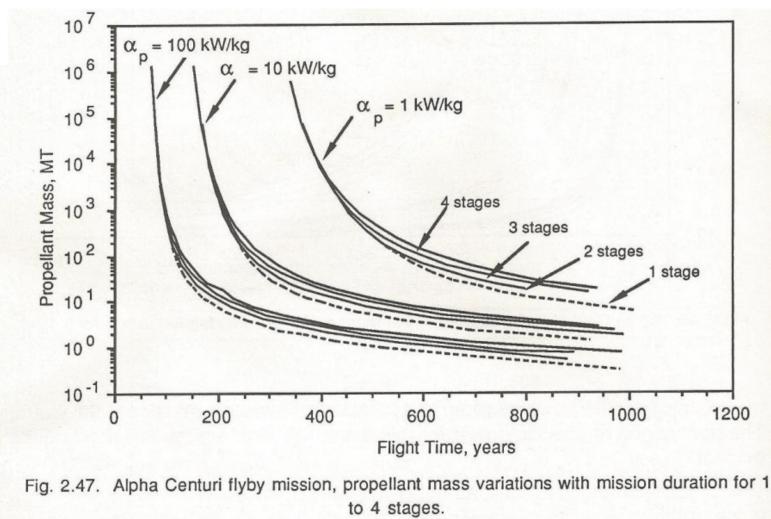
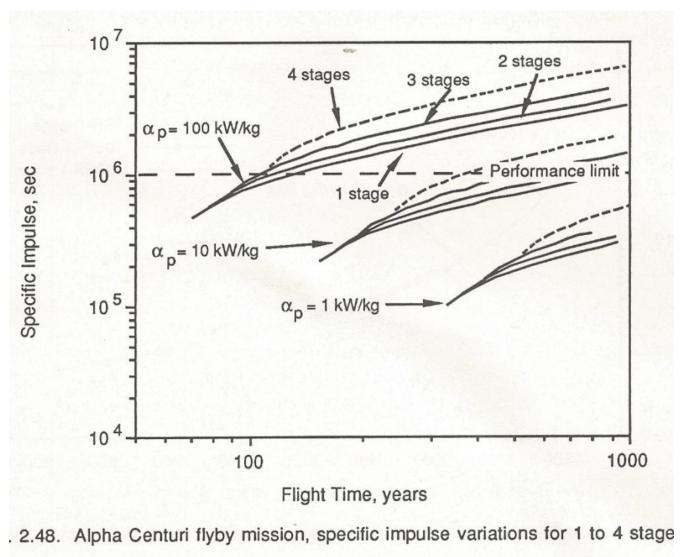

α _p , kW/kg	1.0	10.0	100.0
t, years	365	170	79
∆v, km/s	5,270	11,360	24,460
Mo, MT	80,000	80,000	80,000
Pj, MW, Stage 1	13,900	139,000	1,390,000
Pj, MW Stage 2	694	6,940	69,400
Pj, MW Stage 3	35	350	3,500
F, N	54,900	255,000	1,180,000
<lsp>, seconds</lsp>	120,000	258,000	555,102

TABLE 2-5d. Alpha Centauri fly-by mission performance capabilities and requirements for variations in specific power for: 4-stage vehicle, 10 MT payload, 1,308,000 MT propellant mass.

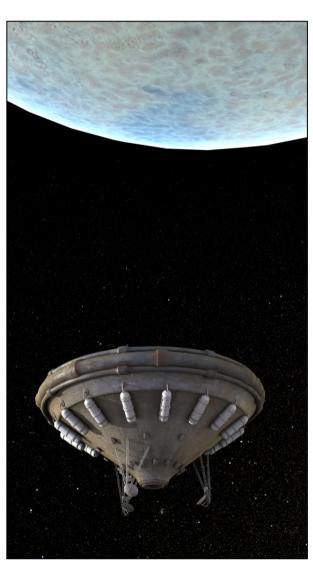
α _p , kW/kg	1.0	10.0	100.0
t, years	332	154	71
Δv, km/s	5,800	12,500	26,900
Mo, MT	1,600,000	1,600,000	1,600,000
Pj, MW, Stage 1	277,700	2,770,000	27,770,000
Pj, MW Stage 2	13,900	139,000	1,390,000
Pj, MW Stage 3	694	6,940	69,400
Pj, MW Stage 4	35	350	3,500
F, N	1,330,000	6,170,000	28,700,000
<lsp>, seconds</lsp>	98,700	212,700	458,200

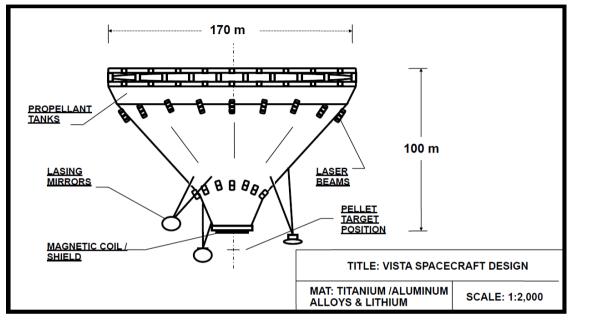


Flyby Mission: 1-4-Stage

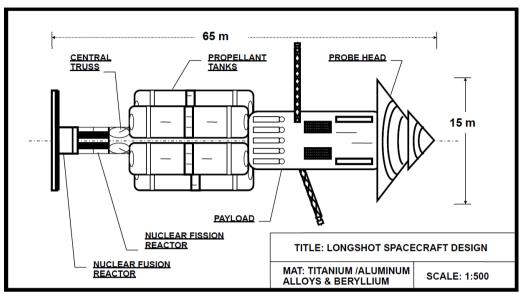


Flyby Mission: 1-4-Stage

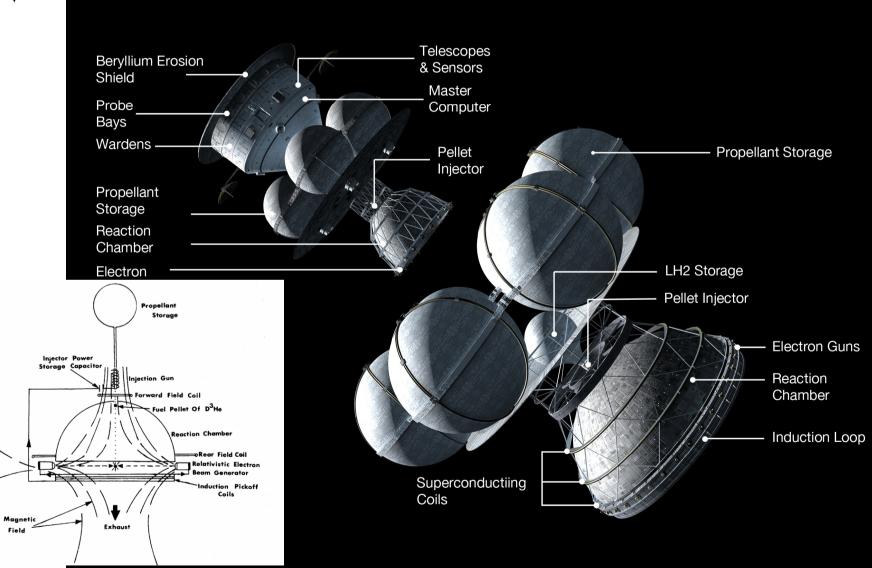



Flyby Mission: 1-4-Stage

Vista, 1987-2000



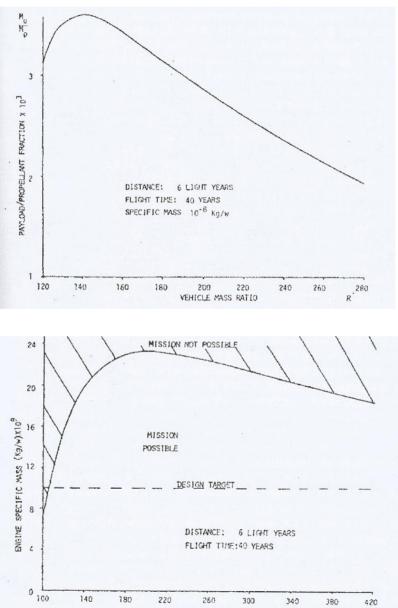
- 6,000 tons, 4,165 tons propellant, 1,835 tons dry mass.
- T=2.4×10⁵N (Mars mission)
- Vex=170 km/s
- P_j = 20.4 GW
- $\underline{P}_{sp} = 11.1 \text{ kW/kg}$


Project Longshot, 1988

- Vex=9,810km/s
- P_j=730 kW/kg
- Need <u>P_{sp}=285 kW/kg</u> to achieve mission.



Parameter	1st stage value	2nd stage value
Propellant mass (tonnes)	46,000	4000
Staging mass (tonnes)	1690	980
Boost duration (years)	2.05	1.76
Number tanks	6	4
Propellant mass per tank (tonnes)	7666.6	1000
Exhaust velocity (km/s)	1.06×10^{4}	$0.921 imes 10^4$
Specific impulse (million s)	1.08	0.94
Stage velocity increment	2.13×10^4	1.53×10^{4}
(km/s)	(0.071c)	(0.051c)
Thrust (N)	$7.54 imes 10^6$	6.63×10^{5}
Pellet pulse frequency (Hz)	250	250
Pellet mass (kg)	0.00284	0.000288
Number pellets	1.6197×10^{10}	1.3888×10^{10}
Number pellets per tank	2.6995×10^{9}	7.5213×10^{9}
Pellet outer radius (cm)	1.97	0.916
Blow-off fraction	0.237	0.261
Burn-up fraction	0.175	0.133
Pellet mean density (kg/m ³)	89.1	89.1
Pellet mass flow rate (kg/s)	0.711	0.072
Driver energy (GJ)	2.7	40
Average debris velocity (km/s)	1.1×10^{4}	0.96×10^{4}
Neutron production rate (n/ pulse)	6×10^{21}	4.5×10^{20}
Neutron production rate (n/s)	$1.5 imes 10^{24}$	$1.1 imes 10^{23}$
Energy release (GJ)	171.82	13.271
Q-value	66.6	33.2

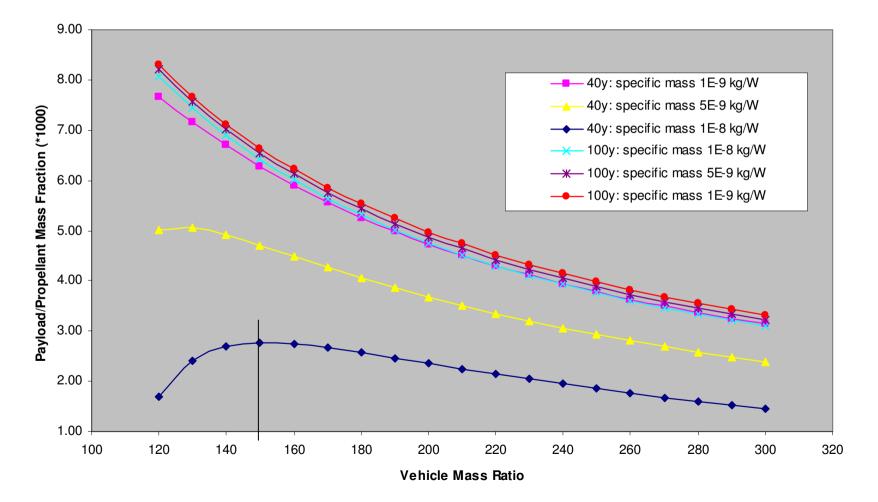


- High mass ratios required for interstellar.
- Low abundance of He-3 would dominate the mission costs.
- Chose to optimize payload/propellant ratio.
- Assumed for a particular value of specific mass there is a value of R which makes mu/mp a maximum.

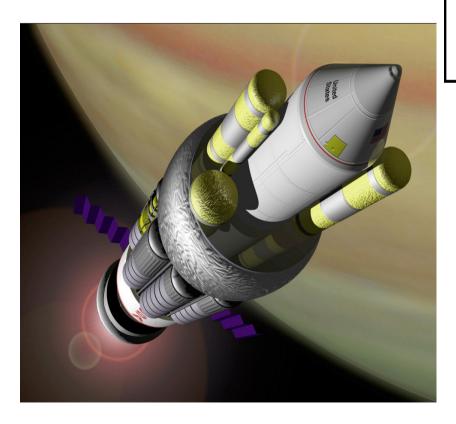
$$m_e = \frac{\lambda v_{ex}^2 m_p}{2t_a}$$
$$\frac{m_u}{m_p} = \frac{1}{R-1} - \frac{1}{2} \frac{\lambda v_{ex}^3 \left(\frac{R}{R-1} Ln(R-1)\right)}{v_{ex} t Ln(R) - S}$$

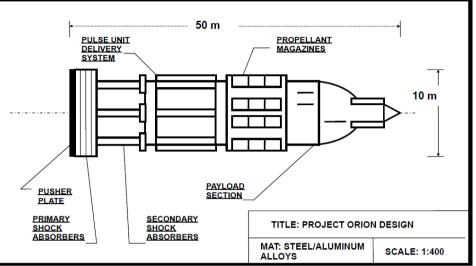
- For 40 year mission to be possible, require specific engine mass lower than 2.5×10⁻⁸ kg/W.
- Chose 1×10⁻⁸ kg/W but difficult to achieve.
- Optimum R at 150 with mu/mp=0.0036.
- But final design had 1st stage engine mass of 1,290 tons producing 44 TW power, equating to specific mass 2.5×10⁻⁸ kg/W.

VEHICLE MASS RATIO

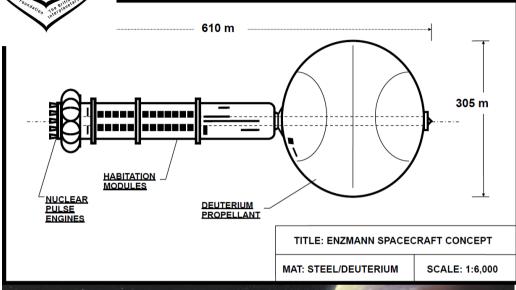

$$P_{j} = \frac{1}{2} \dot{m} V_{ex}^{2} = \frac{1}{2} V_{ex} T$$

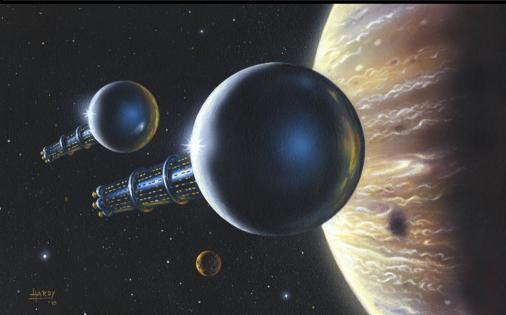
- $P_{i}=0.5\times10^{6}\times10^{7}ms^{-1}\times7.54\times10^{6}N\sim40TW$
- P_{sp}=40TW / 944,000 kg ~<u>42.4 MW/kg</u>




• The lower the specific engine mass the higher the payload/propellant mass fraction.

Interstellar (Dyson) Orion, 1960s





- Vex=15,000 km/s
- T=1×10⁹ N
- $P_j = 7.5 \times 10^{15} W$
- P_{sp}=75 MW/kg

Enzmann (slow boat) Starship, 1960s

Parameter	Value
Dry spacecraft mass (tons)	30,000
Propellant mass (tons)	3×10^{6}
Start population	200
End population	2,000
Total Mass Ratio	101
Mass Ratio	10.05
Exhaust Velocity (km/s)	11,700
Total Delta.V (km/s)	54,000 (0.18c)
Cruise Velocity (km/s)	27,000 (0.09c)
Total acceleration time (years)	18.95
Mass Flow Rate (kg/s)	5.02
Start Acceleration (m/s^2)	0.019 (0.002g)
Total Cruise time (years)	41.05
Total Mission time (years)	60

- Vex=11,700 km/s
- M_{dot}=5.02 kg/s
- Pj=344 TW
- M_{dry}=30,000 tons
- P_{sp}=11.5 MW/kg

Conclusions

- Examined specific power requirements for an interstellar mission.
- Strong correlation with mission time.
- For interstellar probe (robotic or crewed) the specific power likely in the 10s MW/kg range.

